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1 Summary

In the previous lecture, we talked about adversarial examples—both targeted and non-targeted—and learned how to
compute them to attack a model. We also learned about different thread models and what kind of information the
attacker has in each of them. In this lecture, we will discuss an interpretation of the source of the vulnerability
of neural networks to adversarial attacks introduced in the Adversarial Examples Are Not Bugs, They Are Features
paper [4], which proposes that adversarial examples exist due to non-robust features which are highly predictive but
imperceptible to human eyes [2]. In the end, we will learn about three defense mechanisms against adversarial attacks.

2 Generalization vs. Robustness

In empirical risk minimization we find 0 such that:
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Generalization is about having a small error on new datapoints that are from the same distribution as the training
set, while Robustness is about having a small error on datapoints that are close to the training set. In other words,
we have good generalization when E, )~p....£(f5(x),y) is relatively low, and we have good robustness when
LY max g o, <e L(f5(x]), yi) is relatively small.

There is a trade-off between generalization and robustness because of the existence of non-robust features, that are
highly predictive—thus useful for generalization to unseen data—but have poor performance in terms of robustness.
For example, there might be a small patch in images in the train and test set that is imperceptible to humans but
indicates the class, so if the model only cares about having low test error, it will use the patch to classify the images
and can have very high accuracy on test data. However, an attacker can manipulate the images by changing that small
patch, hence generating adversarial examples that are very close to the original samples but will fool the classifier. So
in order to increase robustness, we should remove these non-robust features, which will in turn decrease test accuracy
as they are correlated with the label. We will talk about non-robust features in more detail in the following sections.

3 Two perspectives for adversarial examples

3.1 Perspective 1: Adversarial examples are bugs!

In the usual perspective to explain the existence of adversarial examples, the features of the model are twofold: Useful
features that are responsible for good classification and Useless features that are not predictive of the label but the
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model is unreasonably sensitive to them and can be manipulated to create adversarial examples. From this perspec-
tive, adversarial examples are bugs, because they are the consequence of useless features learned for classification.

Hypothesis 1: Adversarial examples are bugs and correspond to features that are useless for learning.

Experiment 1: Now let’s look at an experiment to test this hypothesis:

Consider a binary classification task on a cat/dog dataset. For each image in the original dataset, we compute the
corresponding adversarial example and change the label. So for each image of a dog, the corresponding sample in the
new dataset (call it Dy ) is the adversarial example generated from that dog that is labeled as a cat, so it looks very
similar to a dog but has small perturbations that fool the model to classify it as a cat. We then train a new classifier on
this new train set but evaluate it on the original test set (with dogs labeled as dogs and cats labeled as cats). Figure 1
shows two possible results. Blue bars show the accuracy of the model on the test set and red bars show the accuracy
of the model when attacked by an adversary. If the hypothesis is true, we should observe figure 1. (a) since the only
(possibly)-useful information in dog-looking images labeled as cats lies within the adversarial perturbations which we
are assuming to be useless for learning, so the model should not learn anything. However, what we actually observe is
figure 1. (b) which shows high accuracy on original, unmodified test set (blue bar), though it is not robust (red bar).

Conclusion: The above experiment demonstrates that adversarial perturbations correspond to features that are mean-
ingful for classification, which we call non-robust features. The model learns to leverage the non-robust features of a
cat (that exist in adversarial examples generated from images of dogs) to label the image as a cat, so it will work well
on the original test set. However, because it focuses on non-robust features it is not robust against attacks. Figure 2
summarises this experiment.

Std Trainjng Std Training
using Dyg using Dyg
(a) (b)

Figure 1: Two options for Experiment 1
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Figure 2: (Left) Results of training using the original dataset. (Middle) Results of adversarial training which will be
discussed in section 5.2 (Right) Results of training on the new training set, D ~NR. We can see that with training on
Dyr, the accuracy on the test set drops a little because the model is using only the non-robust features. Also, the
accuracy on the adversarial dataset is lower using Dy r since non-robust features are very sensitive to perturbations.

3.2 Perspective 2: Adversarial examples are not bugs, they are features!

In an alternative perspective motivated by experiment 1, the features of a model are divided into three groups: Useless,
Robust and Non-robust, as depicted in figure 3. Robust features are the ones correlated with the label that remain in the
image even in the presence of an adversary, but non-robust features are patterns that have no meaningful information
to humans but are actually highly predictive of the label. These non-robust features, however, can be manipulated by
an adversary.

Remark 1. From this perspective, non-robust features are useful for increasing test accuracy, so if we eliminate
non-robust features to make the model robust, the test accuracy will drop and this highlights the trade-off between
generalization and robustness.

Robust features Non-robust features
Useless Correlated with label Correlated with label, but can
features  €ven with adversary be flipped within, e.g., £, ball
() 1 11 1

Figure 3: The perspective in which the adversarial examples are not bug, but features!

An additional experiment shows the behavior of the model when trained only on Robust features [4]:

Experiment 2: In this experiment, we construct a new dataset Dg from the original dataset D that only contains robust
features of images and train a network on Dpg. Std Training using Dpin Figure 4 shows the result of this experiment;
the model is good at generalization to test data (high blue bar) and significantly more robust (shown by the red bar)
than the original classifier (Std Training using D) and the classifier trained only using the non-robust features (Std
Training using DNR).

Figure 5 summarizes these two experiments. For information on how to generate images that only contain robust or
non-robust features, look at section 3 of [4].
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Figure 5: Summarizing experiments 1 and 2

4 Transferability can arise from non-robust features

One of the most intriguing properties of adversarial examples is that they transfer across models with different archi-
tectures and independently sampled training sets. Here, we show that this phenomenon can in fact be viewed as a
natural consequence of the existence of non-robust features. Recall that, according to the main hypothesis, adversarial
examples can arise as a result of perturbing well-generalizing, yet brittle features. Given that such features are inherent
to the data distribution, different classifiers trained on independent samples from that distribution are likely to utilize
similar non-robust features. Consequently, an adversarial example constructed by exploiting the non-robust features
learned by one classifier will transfer to any other classifier utilizing these features in a similar manner [4]. Figure
6 illustrates the transferability of adversarial examples generated by ResNet-50 to different architectures. The x-axis
shows the test accuracy of models when trained on a dataset containing only non-robust features of Resnet-50. This
experiment suggests that architectures that learn better from this training set (i.e. have higher performance on the
standard test set) are more likely to learn similar non-robust features to the original classifier (ResNet-50), so are more

susceptible to transfer attacks, and this supports the hypothesis that adversarial transferability arises from utilizing
similar non-robust features.
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Figure 6: Transfer rate of adversarial examples from a ResNet-50 to different architectures alongside test set perfor-
mance of these architecture when trained on a dataset containing only non-robust features of Rensen-50.

5 Defences

5.1 Gradient Masking

Gradient Masking is a defense mechanism that constructs a model that does not have useful gradients—either by
making the model discontinuous so the gradient would not be computable or by creating ”bad” local maxima—so
attacks that use gradients will not work. The idea is to create a local maximum that is very close to the benign example
(point (0,0) in Figure 7) such that if we do local maximization on the loss function (shown by the blue surface) we
will end up with an adversarial example that has a loss close to the benign example. However, gradient masking can
be beaten in the following ways:

1. One way to get away from the local maxima is to first take a random step from the initial point and then do
gradient ascent as shown in Figure 8, so we will not get stuck in the local maxima.

2. If the defended model is piece-wise constant and not differentiable, we can find a smooth surrogate and compute
gradient on this smooth approximation to find the adversarial example. (Figure 9)

These methods show gradient masking is not a very effective defense. Moreover, from the point of view that states
transferability can arise from non-robust features, we can craft adversarial examples using another model and transfer
them to the model with masked gradients.
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Tramer et al. Ensemble Adversarial Training: Attacks and Defenses
lllustration adapted from slides by Florian Tramér
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5.2 Adversarial Training

The most popular defense against adversarial attacks is adversarial training, whose idea is to train the model against
its own adversarial examples (equation 1).

freargminEq )pya.. | max ((f(z"),y)] 1)
fer 2" —zl|<e

At each iteration within adversarial training, we sample a datapoint, create an adversarial example against the current
model, and train the model on that. So as we train the model, the adversarial examples change.

In adversarial training, we ask the model to fit the original data and all the datapoints in a small neighborhood around
it, so we need more capacity for a robust model (for more information, see [1]). Figure 10 shows an interesting
experiment on MNIST confirming the importance of capacity in robust models. Blue lines show the accuracy of
the model on standard test data, red lines show robust accuracy against FGSM attacks, and brown lines show robust
accuracy against PGD attacks. Recall that FGSM follows 2’ = x + esign(V,I(f(z),y)) and PGD computes several
steps of this update to find the adversarial example. In standard training (a), the model has nearly 100% accuracy on
the standard test set, but zero accuracies on adversarial examples crafted with FGSM or PGD. If we use the model
that has been trained adversarially against adversarial examples crafted with the FGSM attack (b), the model has good
standard accuracy and robust accuracy against FGSM, but very low performance against the PGD attack since PGD
is much stronger than FGSM. The blue line is lower in (b) than in (a) because we have to sacrifice a bit the accuracy
on test data to have a robust model. We can also see that as the capacity increases, the model gets better. If we train
against PGD (c), the model performs well on the standard test set and at the same time is robust against FGMS and
PGD attacks with high enough capacity. For models with low capacity (1 or 2), the attack is too strong that the model
cannot learn anything, but as the capacity increases the behavior shifts as seen in the plots.
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Figure 10

Regularization perspective In regularization perspective proposed by Goodfellow et. al [3], the following objective
is minimized: R

JO,z,y) :=aJ0,z,y) + (1 —a)J(0,x + esign(VJ(0,x,y)),y) (2)
for J(0,x,y) := ¢(fo(x),y). o = 1 corresponds to standard empirical risk minimization, and & = 0 corresponds to
adversarial training, i.e. minimization only on adversarial examples.
In the case of logistic regression, adversarial training is equivalent to adding some regularization to the cost function.
In logistic regression, we solve:

min B gy, log(1 +e 7" )]

where y € {—1,1}. We can show that adversarial training with a logsitic regression model is equivalent to the
following object with a ¢; regularization term in the loss function:

HBH]E(I’?/)NPMG log (1 + e€\|w\|1—wa$) 3)

Important notes  Solving max|,_, <. £(f(z'), y) exactly or even approximately to find adversarial examples is in
general hard because it is a non-concave maximization problem. That is why having the right optimization method can
make a significant difference in practice. For example, when Madry et. al [5] proposed PGD (several steps of FGSM),
it made a huge difference in adversarial training. And they were so confident about the robustness of their models
that they created a NeurIPS competition that asks people to attack their models. Interestingly, nobody succeeded to
produce attacks that significantly break their robust models, especially on MNIST.

5.3 Ensemble Adversarial Training

Ensemble Adversarial Training is a technique that augments training data with perturbations transferred from other
models [6]. In this method, we craft adversarial examples using several pre-trained classifiers and use them to ad-
versarially train our main model. Let’s say we have four models (Figure 11). Models B, C, and D are pre-trained
classifiers with possibly different architectures which we use to craft adversarial examples against our main model, A.
So at each training step, we load our data, craft adversarial examples either using B, C, or D with FGSM, and then we
train A by those adversarial examples. This approach decouples adversarial example generation from the parameters
of the trained model and increases the diversity of perturbations seen during training.

Figure 12 shows the error rate of models trained with adversarial training (blue model) and ensemble adversarial train-
ing (red model), both with examples generated using FGSM. Both models are robust, and hence have low error rates
on clean data. The blue model has been trained with FGSM against itself, so it makes sense that it has a lower error
rate on White-Box FGSM (examples crafted with FGSM on the main model) than the red model that has been trained
with attacks coming from other models. However, if we do FGSM attack that comes from other classifiers (Black-Box
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FGSM Attack), the blue model performs much worse than the red one because it was only trained on attacks against
itself, but ensemble adversarial training makes the model robust against transferrable attacks. It is also important to
note that the blue model performs better against white-box FGSM attack than black-box since in the former case, it
has been trained and tested on similar distribution of examples. In conclusion, this plot shows that we can achieve
better robustness against transfer attacks using ensemble adversarial training.
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Figure 12: Source: Slides by Nicolas Papernot

Figure 13 from [5] shows the impact of € by illustrating the performance of adversarially-trained models against PGD
adversaries of different strengths. The MNIST and CIFAR10 networks were trained against PGD £, adversaries with
€ = 0.3 and € = 8 respectively (the training € is denoted with a red dashed lines in the ¢, plots). We can see that if
the epsilon is too large, the accuracy drops significantly because with very large e, the attacker has too much freedom
and can basically transform the image into random noise, making it impossible for the model to learn them, so it is
important to set up this experiment to find the reasonable value for e. For MNIST with ¢, ball, the standard value for
€ is now considered to be 0.3.
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Figure 13


https://seclab.stanford.edu/AdvML2017/slides/17-09-aro-aml.pdf
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